Systemic EP4 Inhibition Increases Adhesion Formation in a Murine Model of Flexor Tendon Repair

نویسندگان

  • Michael B. Geary
  • Caitlin A. Orner
  • Fatima Bawany
  • Hani A. Awad
  • Warren C. Hammert
  • Regis J. O’Keefe
  • Alayna E. Loiselle
  • Andrew Philp
چکیده

Flexor tendon injuries are a common clinical problem, and repairs are frequently complicated by post-operative adhesions forming between the tendon and surrounding soft tissue. Prostaglandin E2 and the EP4 receptor have been implicated in this process following tendon injury; thus, we hypothesized that inhibiting EP4 after tendon injury would attenuate adhesion formation. A model of flexor tendon laceration and repair was utilized in C57BL/6J female mice to evaluate the effects of EP4 inhibition on adhesion formation and matrix deposition during flexor tendon repair. Systemic EP4 antagonist or vehicle control was given by intraperitoneal injection during the late proliferative phase of healing, and outcomes were analyzed for range of motion, biomechanics, histology, and genetic changes. Repairs treated with an EP4 antagonist demonstrated significant decreases in range of motion with increased resistance to gliding within the first three weeks after injury, suggesting greater adhesion formation. Histologic analysis of the repair site revealed a more robust granulation zone in the EP4 antagonist treated repairs, with early polarization for type III collagen by picrosirius red staining, findings consistent with functional outcomes. RT-PCR analysis demonstrated accelerated peaks in F4/80 and type III collagen (Col3a1) expression in the antagonist group, along with decreases in type I collagen (Col1a1). Mmp9 expression was significantly increased after discontinuing the antagonist, consistent with its role in mediating adhesion formation. Mmp2, which contributes to repair site remodeling, increases steadily between 10 and 28 days post-repair in the EP4 antagonist group, consistent with the increased matrix and granulation zones requiring remodeling in these repairs. These findings suggest that systemic EP4 antagonism leads to increased adhesion formation and matrix deposition during flexor tendon healing. Counter to our hypothesis that EP4 antagonism would improve the healing phenotype, these results highlight the complex role of EP4 signaling during tendon repair.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of novel tubular scaffold for tendon repair from chitosan in combination with zinc nanoparticles

Chitosan bears numerous properties, such as biocompatibility, biodegradability and non-toxicity making it suitable for use in different biomedical fields. Zinc (Zn) is required for fibroblasts proliferation and collagen synthesis as essential elements of wound healing. Its nanoparticles are well known for their capability to enhance wound healing by cell adhesion and migration improvement throu...

متن کامل

Cellular distribution and gene expression profile during flexor tendon graft repair: A novel tissue engineering approach*

To understand scar and adhesion formation during postsurgical period of intrasynovial tendon graft healing, a murine model of flexor digitorum longus tendon graft repair was developed, by utilizing flexor digitorum longus tendon allograft from donor Rosa26/+ mouse, and the healing process at days 3, 7, 14, 21, 28, and 35 post surgery of host wild-type mouse was followed. Using X-gal staining, β...

متن کامل

Bone Marrow-Derived Matrix Metalloproteinase-9 Is Associated with Fibrous Adhesion Formation after Murine Flexor Tendon Injury

The pathogenesis of adhesions following primary tendon repair is poorly understood, but is thought to involve dysregulation of matrix metalloproteinases (Mmps). We have previously demonstrated that Mmp9 gene expression is increased during the inflammatory phase following murine flexor digitorum (FDL) tendon repair in association with increased adhesions. To further investigate the role of Mmp9,...

متن کامل

Early growth response factor-1: expression in a rabbit flexor tendon scar model.

BACKGROUND Adhesion formation limits functional recovery after flexor tendon repair. Various growth factors have been implicated in the adhesion scar process. Early growth response factor-1 (EGR-1), a transcription factor associated with synthesis of a variety of key fibrotic growth factors and expression of extracellular matrix genes, has never been identified in a tendon repair model. METHO...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015